Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

A commuting-vector-field approach to some dispersive estimates (1701.01460v4)

Published 5 Jan 2017 in math.AP

Abstract: We prove the pointwise decay of solutions to three linear equations: (i) the transport equation in phase space generalizing the classical Vlasov equation, (ii) the linear Schrodinger equation, (iii) the Airy (linear KdV) equation. The usual proofs use explicit representation formulae, and either obtain $L1$---$L\infty$ decay through directly estimating the fundamental solution in physical space, or by studying oscillatory integrals coming from the representation in Fourier space. Our proof instead combines "vector field" commutators that capture the inherent symmetries of the relevant equations with conservation laws for mass and energy to get space-time weighted energy estimates. Combined with a simple version of Sobolev's inequality this gives pointwise decay as desired. In the case of the Vlasov and Schrodinger equations we can recover sharp pointwise decay; in the Schrodinger case we also show how to obtain local energy decay as well as Strichartz-type estimates. For the Airy equation we obtain a local energy decay that is almost sharp from the scaling point of view, but nonetheless misses the classical estimates by a gap. This work is inspired by the work of Klainerman on $L2$---$L\infty$ decay of wave equations, as well as the recent work of Fajman, Joudioux, and Smulevici on decay of mass distributions for the relativistic Vlasov equation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube