Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Review of Neural Network Based Machine Learning Approaches for Rotor Angle Stability Control (1701.01214v1)

Published 5 Jan 2017 in cs.SY and cs.NE

Abstract: This paper reviews the current status and challenges of Neural Networks (NNs) based machine learning approaches for modern power grid stability control including their design and implementation methodologies. NNs are widely accepted as AI approaches offering an alternative way to control complex and ill-defined problems. In this paper various application of NNs for power system rotor angle stabilization and control problem is discussed. The main focus of this paper is on the use of Reinforcement Learning (RL) and Supervised Learning (SL) algorithms in power system wide-area control (WAC). Generally, these algorithms due to their capability in modeling nonlinearities and uncertainties are used for transient classification, neuro-control, wide-area monitoring and control, renewable energy management and control, and so on. The works of researchers in the field of conventional and renewable energy systems are reported and categorized. Paper concludes by presenting, comparing and evaluating various learning techniques and infrastructure configurations based on efficiency.

Citations (13)

Summary

We haven't generated a summary for this paper yet.