Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Reinforcement Learning for Power System Control: A Review (2407.00681v1)

Published 30 Jun 2024 in eess.SY and cs.SY

Abstract: The large-scale integration of intermittent renewable energy resources introduces increased uncertainty and volatility to the supply side of power systems, thereby complicating system operation and control. Recently, data-driven approaches, particularly reinforcement learning (RL), have shown significant promise in addressing complex control challenges in power systems, because RL can learn from interactive feedback without needing prior knowledge of the system model. However, the training process of model-free RL methods relies heavily on random decisions for exploration, which may result in ``bad" decisions that violate critical safety constraints and lead to catastrophic control outcomes. Due to the inability of RL methods to theoretically ensure decision safety in power systems, directly deploying traditional RL algorithms in the real world is deemed unacceptable. Consequently, the safety issue in RL applications, known as safe RL, has garnered considerable attention in recent years, leading to numerous important developments. This paper provides a comprehensive review of the state-of-the-art safe RL techniques and discusses how these techniques can be applied to power system control problems such as frequency regulation, voltage control, and energy management. We then present discussions on key challenges and future research directions, related to convergence and optimality, training efficiency, universality, and real-world deployment.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com