Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Parameterized Polynomial Systems with Decomposable Projections (1612.08807v2)

Published 28 Dec 2016 in math.AG, cs.NA, and math.NA

Abstract: The Galois group of a parameterized polynomial system of equations encodes the structure of the solutions. This monodromy group acts on the set of solutions for a general set of parameters, that is, on the fiber of a projection from the incidence variety of parameters and solutions onto the space of parameters. When this projection is decomposable, the Galois group is imprimitive, and we show that the structure can be exploited for computational improvements. Furthermore, we develop a new algorithm for solving these systems based on a suitable trace test. We illustrate our method on examples in statistics, kinematics, and benchmark problems in computational algebra. In particular, we resolve a conjecture on the number of solutions of the moment system associated to a mixture of Gaussian distributions.

Citations (22)

Summary

We haven't generated a summary for this paper yet.