Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Decomposable Sparse Systems (2001.04228v2)

Published 13 Jan 2020 in math.AG, cs.NA, and math.NA

Abstract: Amendola et al. proposed a method for solving systems of polynomial equations lying in a family which exploits a recursive decomposition into smaller systems. A family of systems admits such a decomposition if and only if the corresponding Galois group is imprimitive. When the Galois group is imprimitive we consider the problem of computing an explicit decomposition. A consequence of Esterov's classification of sparse polynomial systems with imprimitive Galois groups is that this decomposition is obtained by inspection. This leads to a recursive algorithm to solve decomposable sparse systems, which we present and give evidence for its efficiency.

Citations (14)

Summary

We haven't generated a summary for this paper yet.