Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of Adequate Vision Span for Attention-Based Neural Machine Translation (1612.06043v4)

Published 19 Dec 2016 in cs.CL and cs.AI

Abstract: Recently, the attention mechanism plays a key role to achieve high performance for Neural Machine Translation models. However, as it computes a score function for the encoder states in all positions at each decoding step, the attention model greatly increases the computational complexity. In this paper, we investigate the adequate vision span of attention models in the context of machine translation, by proposing a novel attention framework that is capable of reducing redundant score computation dynamically. The term "vision span" means a window of the encoder states considered by the attention model in one step. In our experiments, we found that the average window size of vision span can be reduced by over 50% with modest loss in accuracy on English-Japanese and German-English translation tasks.% This results indicate that the conventional attention mechanism performs a significant amount of redundant computation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Raphael Shu (24 papers)
  2. Hideki Nakayama (59 papers)