Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attentive Explanations: Justifying Decisions and Pointing to the Evidence (1612.04757v2)

Published 14 Dec 2016 in cs.CV, cs.AI, and cs.CL

Abstract: Deep models are the defacto standard in visual decision models due to their impressive performance on a wide array of visual tasks. However, they are frequently seen as opaque and are unable to explain their decisions. In contrast, humans can justify their decisions with natural language and point to the evidence in the visual world which led to their decisions. We postulate that deep models can do this as well and propose our Pointing and Justification (PJ-X) model which can justify its decision with a sentence and point to the evidence by introspecting its decision and explanation process using an attention mechanism. Unfortunately there is no dataset available with reference explanations for visual decision making. We thus collect two datasets in two domains where it is interesting and challenging to explain decisions. First, we extend the visual question answering task to not only provide an answer but also a natural language explanation for the answer. Second, we focus on explaining human activities which is traditionally more challenging than object classification. We extensively evaluate our PJ-X model, both on the justification and pointing tasks, by comparing it to prior models and ablations using both automatic and human evaluations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Dong Huk Park (12 papers)
  2. Lisa Anne Hendricks (37 papers)
  3. Zeynep Akata (144 papers)
  4. Bernt Schiele (210 papers)
  5. Trevor Darrell (324 papers)
  6. Marcus Rohrbach (75 papers)
Citations (79)

Summary

We haven't generated a summary for this paper yet.