Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 453 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Modified Cholesky Riemann Manifold Hamiltonian Monte Carlo: Exploiting Sparsity for Fast Sampling of High-dimensional Targets (1612.04093v2)

Published 13 Dec 2016 in stat.CO and stat.ME

Abstract: Riemann manifold Hamiltonian Monte Carlo (RMHMC) has the potential to produce high-quality Markov chain Monte Carlo-output even for very challenging target distributions. To this end, a symmetric positive definite scaling matrix for RMHMC, which derives, via a modified Cholesky factorization, from the potentially indefinite negative Hessian of the target log-density is proposed. The methodology is able to exploit the sparsity of the Hessian, stemming from conditional independence modeling assumptions, and thus admit fast implementation of RMHMC even for high-dimensional target distributions. Moreover, the methodology can exploit log-concave conditional target densities, often encountered in Bayesian hierarchical models, for faster sampling and more straight forward tuning. The proposed methodology is compared to alternatives for some challenging targets, and is illustrated by applying a state space model to real data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)