Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Incremental Construction for the Hausdorff Voronoi Diagram of point clusters (1612.01335v2)

Published 5 Dec 2016 in cs.CG

Abstract: This paper applies the randomized incremental construction (RIC) framework to computing the Hausdorff Voronoi diagram of a family of k clusters of points in the plane. The total number of points is n. The diagram is a generalization of Voronoi diagrams based on the Hausdorff distance function. The combinatorial complexity of the Hausdorff Voronoi diagram is O(n+m), where m is the total number of crossings between pairs of clusters. For non-crossing clusters (m=0), our algorithm works in expected O(n log n + k log n log k) time and deterministic O(n) space. For arbitrary clusters (m=O(n2)), the algorithm runs in expected O((m+n log k) log n) time and O(m +n log k) space. When clusters cross, bisectors are disconnected curves resulting in disconnected Voronoi regions that challenge the incremental construction. This paper applies the RIC paradigm to a Voronoi diagram with disconnected regions and disconnected bisectors, for the first time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.