Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Document Embeddings for Intensive Care Patient Mortality Prediction (1612.00467v1)

Published 1 Dec 2016 in cs.CL

Abstract: We present an automatic mortality prediction scheme based on the unstructured textual content of clinical notes. Proposing a convolutional document embedding approach, our empirical investigation using the MIMIC-III intensive care database shows significant performance gains compared to previously employed methods such as latent topic distributions or generic doc2vec embeddings. These improvements are especially pronounced for the difficult problem of post-discharge mortality prediction.

Citations (64)

Summary

We haven't generated a summary for this paper yet.