Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining LSTM and Latent Topic Modeling for Mortality Prediction (1709.02842v1)

Published 8 Sep 2017 in cs.CL

Abstract: There is a great need for technologies that can predict the mortality of patients in intensive care units with both high accuracy and accountability. We present joint end-to-end neural network architectures that combine long short-term memory (LSTM) and a latent topic model to simultaneously train a classifier for mortality prediction and learn latent topics indicative of mortality from textual clinical notes. For topic interpretability, the topic modeling layer has been carefully designed as a single-layer network with constraints inspired by LDA. Experiments on the MIMIC-III dataset show that our models significantly outperform prior models that are based on LDA topics in mortality prediction. However, we achieve limited success with our method for interpreting topics from the trained models by looking at the neural network weights.

Citations (31)

Summary

We haven't generated a summary for this paper yet.