Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two Methods For Wild Variational Inference (1612.00081v2)

Published 30 Nov 2016 in stat.ML

Abstract: Variational inference provides a powerful tool for approximate probabilistic in- ference on complex, structured models. Typical variational inference methods, however, require to use inference networks with computationally tractable proba- bility density functions. This largely limits the design and implementation of vari- ational inference methods. We consider wild variational inference methods that do not require tractable density functions on the inference networks, and hence can be applied in more challenging cases. As an example of application, we treat stochastic gradient Langevin dynamics (SGLD) as an inference network, and use our methods to automatically adjust the step sizes of SGLD, yielding significant improvement over the hand-designed step size schemes

Citations (19)

Summary

We haven't generated a summary for this paper yet.