Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Numerical studies of serendipity and tensor product elements for eigenvalue problems (1612.00066v1)

Published 30 Nov 2016 in math.NA

Abstract: While the use of finite element methods for the numerical approximation of eigenvalues is a well-studied problem, the use of serendipity elements for this purpose has received little attention in the literature. We show by numerical experiments that serendipity elements, which are defined on a square reference geometry, can attain the same order of accuracy as their tensor product counterparts while using dramatically fewer degrees of freedom. In some cases, the serendipity method uses only half as many basis functions as the tensor product method while still producing the same numerical approximation of an eigenvalue. To encourage the further use and study of serendipity elements, we provide a table of serendipity basis functions for low order cases and a Mathematica file that can be used to generate the basis functions for higher order cases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.