Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Univariate log-concave density estimation with symmetry or modal constraints (1611.10335v4)

Published 30 Nov 2016 in math.ST and stat.TH

Abstract: We study nonparametric maximum likelihood estimation of a log-concave density function $f_0$ which is known to satisfy further constraints, where either (a) the mode $m$ of $f_0$ is known, or (b) $f_0$ is known to be symmetric about a fixed point $m$. We develop asymptotic theory for both constrained log-concave maximum likelihood estimators (MLE's), including consistency, global rates of convergence, and local limit distribution theory. In both cases, we find the MLE's pointwise limit distribution at $m$ (either the known mode or the known center of symmetry) and at a point $x_0 \ne m$. Software to compute the constrained estimators is available in the R package \verb+logcondens.mode+. The symmetry-constrained MLE is particularly useful in contexts of location estimation. The mode-constrained MLE is useful for mode-regression. The mode-constrained MLE can also be used to form a likelihood ratio test for the location of the mode of $f_0$. These problems are studied in separate papers. In particular, in a separate paper we show that, under a curvature assumption, the likelihood ratio statistic for the location of the mode can be used for hypothesis tests or confidence intervals that do not depend on either tuning parameters or nuisance parameters.

Summary

We haven't generated a summary for this paper yet.