Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive estimation in symmetric location model under log-concavity constraint (2105.04287v2)

Published 10 May 2021 in math.ST and stat.TH

Abstract: We revisit the problem of estimating the center of symmetry $\theta$ of an unknown symmetric density $f$. Although stone (1975), Eden (1970), and Sacks (1975) constructed adaptive estimators of $\theta$ in this model, their estimators depend on external tuning parameters. In an effort to reduce the burden of tuning parameters, we impose an additional restriction of log-concavity on $f$. We construct truncated one-step estimators which are adaptive under the log-concavity assumption. Our simulations suggest that the untruncated version of the one step estimator, which is tuning parameter free, is also asymptotically efficient. We also study the maximum likelihood estimator (MLE) of $\theta$ in the shape-restricted model.

Summary

We haven't generated a summary for this paper yet.