Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Radio Resource Management in 5G Networks: Framework, Opportunities and Challenges (1611.10253v3)

Published 30 Nov 2016 in cs.NI, cs.IT, math.IT, and math.OC

Abstract: In the fifth generation (5G) of mobile broadband systems, Radio Resources Management (RRM) will reach unprecedented levels of complexity. To cope with the ever more sophisticated RRM functionalities and with the growing variety of scenarios, while carrying out the prompt decisions required in 5G, this manuscript presents a lean 5G RRM architecture that capitalizes on recent advances in the field of machine learning in combination with the large amount of data readily available in the network from measurements and system observations. The architecture relies on a single general-purpose learning framework conceived for RRM directly using the data gathered in the network. The complexity of RRM is shifted to the design of the framework, whilst the RRM algorithms derived from this framework are executed in a computationally efficient distributed manner at the radio access nodes. The potential of this approach is verified in a pair of pertinent scenarios and future directions on applications of machine learning to RRM are discussed.

Citations (27)

Summary

We haven't generated a summary for this paper yet.