Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexible Payload Configuration for Satellites using Machine Learning (2310.11966v1)

Published 18 Oct 2023 in cs.LG, cs.SY, and eess.SY

Abstract: Satellite communications, essential for modern connectivity, extend access to maritime, aeronautical, and remote areas where terrestrial networks are unfeasible. Current GEO systems distribute power and bandwidth uniformly across beams using multi-beam footprints with fractional frequency reuse. However, recent research reveals the limitations of this approach in heterogeneous traffic scenarios, leading to inefficiencies. To address this, this paper presents a ML-based approach to Radio Resource Management (RRM). We treat the RRM task as a regression ML problem, integrating RRM objectives and constraints into the loss function that the ML algorithm aims at minimizing. Moreover, we introduce a context-aware ML metric that evaluates the ML model's performance but also considers the impact of its resource allocation decisions on the overall performance of the communication system.

Summary

We haven't generated a summary for this paper yet.