Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Discontinuity of the phase transition for the planar random-cluster and Potts models with $q>4$ (1611.09877v2)

Published 29 Nov 2016 in math.PR, math-ph, and math.MP

Abstract: We prove that the $q$-state Potts model and the random-cluster model with cluster weight $q>4$ undergo a discontinuous phase transition on the square lattice. More precisely, we show - Existence of multiple infinite-volume measures for the critical Potts and random-cluster models, - Ordering for the measures with monochromatic (resp. wired) boundary conditions for the critical Potts model (resp. random-cluster model), and - Exponential decay of correlations for the measure with free boundary conditions for both the critical Potts and random-cluster models. The proof is based on a rigorous computation of the Perron-Frobenius eigenvalues of the diagonal blocks of the transfer matrix of the six-vertex model, whose ratios are then related to the correlation length of the random-cluster model. As a byproduct, we rigorously compute the correlation lengths of the critical random-cluster and Potts models, and show that they behave as $\exp(\pi2/\sqrt{q-4})$ as $q$ tends to 4.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.