Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Franke-Jawerth embeddings for Besov and Triebel-Lizorkin spaces with variable exponents (1611.08985v1)

Published 28 Nov 2016 in math.FA

Abstract: The classical Jawerth and Franke embeddings $$ F{s_0}_{p_0,q}({\mathbb R}n)\hookrightarrow B{s_1}_{p_1,p_0}({\mathbb R}n) \quad \mbox{and} \quad B{s_0}_{p_0,p_1}({\mathbb R}n)\hookrightarrow F{s_1}_{p_1,q}({\mathbb R}n) $$ are versions of Sobolev embedding between the scales of Besov and Triebel-Lizorkin function spaces for $s_0>s_1$ and $$ s_0-\frac{n}{p_0} = s_1-\frac{n}{p_1}.$$ We prove Jawerth and Franke embeddings for the scales of Besov and Triebel-Lizorkin spaces with all exponents variable $$ F{s_0(\cdot)}_{p_0(\cdot),q(\cdot)}\hookrightarrow B{s_1(\cdot)}_{p_1(\cdot),p_0(\cdot)} \quad \mbox{and} \quad B{s_0(\cdot)}_{p_0(\cdot),p_1(\cdot)}\hookrightarrow F{s_1(\cdot)}_{p_1(\cdot),q(\cdot)}, $$ respectively, if $\inf_{x\in\mathbb{R}n}(s_0(x)-s_1(x))>0$ and $$ s_0(x) -\frac{n}{p_0(x)} = s_1(x) -\frac{n}{p_1(x)}, \quad x \in {\mathbb R}n. $$ We work exclusively with the associated sequence spaces $b{s(\cdot)}_{p(\cdot),q(\cdot)}$ and $f{s(\cdot)}_{p(\cdot),q(\cdot)}$, which is justified by well known decomposition techniques. We give also a different proof of the Franke embedding in the constant exponent case which avoids duality arguments and interpolation. Our results hold also for 2-microlocal function spaces $B{\mathbf{w}}_{p(\cdot),q(\cdot)}({\mathbb R}n)$ and $F{\mathbf{w}}_{p(\cdot),q(\cdot)}({\mathbb R}n)$ which unify the smoothness scales of spaces of variable smoothness and generalized smoothness spaces.

Summary

We haven't generated a summary for this paper yet.