Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-smooth atomic decomposition of variable 2-microlocal Besov-type and Triebel-Lizorkin-type spaces (2011.08490v1)

Published 17 Nov 2020 in math.FA

Abstract: In this paper we provide non-smooth atomic decompositions of 2-microlocal Besov-type and Triebel-Lizorkin-type spaces with variable exponents $B{\mathrm{\boldsymbol{\omega}}, \phi}{p(\cdot),q(\cdot)}(\mathbb{R}n)$ and $F{\mathrm{\boldsymbol{\omega}}, \phi}{p(\cdot),q(\cdot)}(\mathbb{R}n)$. Of big importance in general, and an essential tool here, are the characterizations of the spaces via maximal functions and local means, that we also present. These spaces were recently introduced by Wu at al. and cover not only variable 2-microlocal Besov and Triebel-Lizorkin spaces $B{\mathrm{\boldsymbol{\omega}}}_{p(\cdot),q(\cdot)}(\mathbb{R}n)$ and $F{\mathrm{\boldsymbol{\omega}}}_{p(\cdot),q(\cdot)}(\mathbb{R}n)$, but also the more classical smoothness Morrey spaces $B{s, \tau}{p,q}(\mathbb{R}n)$ and $F{s,\tau}{p,q}(\mathbb{R}n)$. Afterwards, we state a pointwise multipliers assertion for this scale.

Summary

We haven't generated a summary for this paper yet.