Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Distributed Estimation for Adaptive Networks Based on Serial-Inspired Diffusion (1611.08951v1)

Published 28 Nov 2016 in cs.MA

Abstract: Distributed estimation and processing in networks modeled by graphs have received a great deal of interest recently, due to the benefits of decentralised processing in terms of performance and robustness to communications link failure between nodes of the network. Diffusion-based algorithms have been demonstrated to be among the most effective for distributed signal processing problems, through the combination of local node estimate updates and sharing of information with neighbour nodes through diffusion. In this work, we develop a serial-inspired approach based on message-passing strategies that provides a significant improvement in performance over prior art. The concept of serial processing in the graph has been successfully applied in sum-product based algorithms and here provides inspiration for an algorithm which makes use of the most up-to-date information in the graph in combination with the diffusion approach to offer improved performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.