Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ResFeats: Residual Network Based Features for Image Classification (1611.06656v1)

Published 21 Nov 2016 in cs.CV

Abstract: Deep residual networks have recently emerged as the state-of-the-art architecture in image segmentation and object detection. In this paper, we propose new image features (called ResFeats) extracted from the last convolutional layer of deep residual networks pre-trained on ImageNet. We propose to use ResFeats for diverse image classification tasks namely, object classification, scene classification and coral classification and show that ResFeats consistently perform better than their CNN counterparts on these classification tasks. Since the ResFeats are large feature vectors, we propose to use PCA for dimensionality reduction. Experimental results are provided to show the effectiveness of ResFeats with state-of-the-art classification accuracies on Caltech-101, Caltech-256 and MLC datasets and a significant performance improvement on MIT-67 dataset compared to the widely used CNN features.

Citations (55)

Summary

We haven't generated a summary for this paper yet.