Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sumsets of the distance set in $\mathbb{F}_q^d$ (1611.06398v3)

Published 19 Nov 2016 in math.NT

Abstract: Let $\mathbb{F}q$ be a finite field of order $q$, where $q$ is large odd prime power. In this paper, we improve some recent results on the additive energy of the distance set, and on sumsets of the distance set due to Shparlinski (2016). More precisely, we prove that for $\mathcal{E}\subseteq \mathbb{F}_qd$, if $d=2$ and $q{1+\frac{1}{4k-1}}=o(|\mathcal{E}|)$ then we have $|k\Delta{\mathbb{F}q}(\mathcal{E})|=(1-o(1))q$; if $d\ge 3$ and $q{\frac{d}{2}+\frac{1}{2k}}=o(|\mathcal{E}|)$ then we have $|k\Delta{\mathbb{F}q}(\mathcal{E})|=(1-o(1))q,$ where $k\Delta{\mathbb{F}q}(\mathcal{E}):=\Delta{\mathbb{F}q}(\mathcal{E})+\cdots+\Delta{\mathbb{F}_q}(\mathcal{E}) ~(\mbox{$k$ times}).$

Summary

We haven't generated a summary for this paper yet.