2000 character limit reached
Sumsets of the distance set in $\mathbb{F}_q^d$ (1611.06398v3)
Published 19 Nov 2016 in math.NT
Abstract: Let $\mathbb{F}q$ be a finite field of order $q$, where $q$ is large odd prime power. In this paper, we improve some recent results on the additive energy of the distance set, and on sumsets of the distance set due to Shparlinski (2016). More precisely, we prove that for $\mathcal{E}\subseteq \mathbb{F}_qd$, if $d=2$ and $q{1+\frac{1}{4k-1}}=o(|\mathcal{E}|)$ then we have $|k\Delta{\mathbb{F}q}(\mathcal{E})|=(1-o(1))q$; if $d\ge 3$ and $q{\frac{d}{2}+\frac{1}{2k}}=o(|\mathcal{E}|)$ then we have $|k\Delta{\mathbb{F}q}(\mathcal{E})|=(1-o(1))q,$ where $k\Delta{\mathbb{F}q}(\mathcal{E}):=\Delta{\mathbb{F}q}(\mathcal{E})+\cdots+\Delta{\mathbb{F}_q}(\mathcal{E}) ~(\mbox{$k$ times}).$