Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the sums of any k points in finite fields (1403.6138v2)

Published 24 Mar 2014 in math.CO, math.CA, and math.NT

Abstract: For a set $E\subset \mathbb F_qd$, we define the $k$-resultant magnitude set as $ \Delta_k(E) ={|\textbf{x}1 + \dots + \textbf{x}_k|\in \mathbb F_q: \textbf{x}_1, \dots, \textbf{x}_k \in E},$ where $|\textbf{v}|=v_12+\cdots+ v_d2$ for $\textbf{v}=(v_1, \ldots, v_d) \in \mathbb F_qd.$ In this paper we find a connection between a lower bound of the cardinality of the $k$-resultant magnitude set and the restriction theorem for spheres in finite fields. As a consequence, it is shown that if $E\subset \mathbb F_qd$ with $|E|\geq C q{\frac{d+1}{2}-\frac{1}{6d+2}},$ then $|\Delta_3(E)|\geq c q$ for $d = 4$ or $d = 6$, and $|\Delta_4(E)| \geq cq$ for even dimensions $d \geq 8.$ In addition, we prove that if $d\geq 8$ is even, and $|E|\geq C\varepsilon ~q{\frac{d+1}{2} - \frac{1}{9d -18} + \varepsilon}$ for $\varepsilon >0$, then $|\Delta_3(E)|\geq c q.$

Summary

We haven't generated a summary for this paper yet.