Valley Hall Effect and Nonlocal Transport in Strained Graphene (1611.02382v2)
Abstract: Graphene subject to high levels of shear strain leads to strong pseudo-magnetic fields resulting in the emergence of Landau levels. Here we show that, with modest levels of strain, graphene can also sustain a classical valley hall effect (VHE) that can be detected in nonlocal transport measurements. We provide a theory of the strain-induced VHE starting from the quantum Boltzmann equation. This allows us to show that, averaging over short-range impurity configurations destroys quantum coherence between valleys, leaving the elastic scattering time and inter-valley scattering rate as the only parameters characterizing the transport theory. Using the theory, we compute the nonlocal resistance of a Hall bar device in the diffusive regime. Our theory is also relevant for the study of moderate strain effects in the (nonlocal) transport properties of other two-dimensional materials and van der Walls heterostructures.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.