Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chinese/English mixed Character Segmentation as Semantic Segmentation (1611.01982v2)

Published 7 Nov 2016 in cs.CV

Abstract: OCR character segmentation for multilingual printed documents is difficult due to the diversity of different linguistic characters. Previous approaches mainly focus on monolingual texts and are not suitable for multilingual-lingual cases. In this work, we particularly tackle the Chinese/English mixed case by reframing it as a semantic segmentation problem. We take advantage of the successful architecture called fully convolutional networks (FCN) in the field of semantic segmentation. Given a wide enough receptive field, FCN can utilize the necessary context around a horizontal position to determinate whether this is a splitting point or not. As a deep neural architecture, FCN can automatically learn useful features from raw text line images. Although trained on synthesized samples with simulated random disturbance, our FCN model generalizes well to real-world samples. The experimental results show that our model significantly outperforms the previous methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.