Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed context networks for semantic segmentation (1610.05854v1)

Published 19 Oct 2016 in cs.CV

Abstract: Semantic segmentation is challenging as it requires both object-level information and pixel-level accuracy. Recently, FCN-based systems gained great improvement in this area. Unlike classification networks, combining features of different layers plays an important role in these dense prediction models, as these features contains information of different levels. A number of models have been proposed to show how to use these features. However, what is the best architecture to make use of features of different layers is still a question. In this paper, we propose a module, called mixed context network, and show that our presented system outperforms most existing semantic segmentation systems by making use of this module.

Citations (9)

Summary

We haven't generated a summary for this paper yet.