Quantitative stratification of $F$-subharmonic functions (1610.09946v2)
Abstract: In this paper, we study the singular sets of $F$-subharmonic functions $u: B_{2}(0{n})\rightarrow\mathbf{R}$, where $F$ is a subequation. The singular set $\mathcal{S}(u)\subset B_{2}(0{n})$ has a stratification $\mathcal{S}{0}(u)\subset\mathcal{S}{1}(u)\subset\cdots\subset\mathcal{S}{k}(u)\subset\cdots\subset\mathcal{S}(u)$, where $x\in\mathcal{S}{k}(u)$ if no tangent function to $u$ at $x$ is $(k+1)$-homogeneous. We define the quantitative stratification $\mathcal{S}{\eta,r}{k}(u)$ and $\mathcal{S}{\eta}{k}(u)=\cap_{r}\mathcal{S}_{\eta,r}{k}(u)$. When homogeneity of tangents holds for $F$, we prove that $dim_{H}\mathcal{S}{k}(u)\leq k$ and $\mathcal{S}(u)=\mathcal{S}{n-p}(u)$, where $p$ is the Riesz characteristic of $F$. And for the top quantitative stratification $\mathcal{S}{\eta}{n-p}(u)$, we have the Minkowski estimate $\text{Vol}(B{r}(\mathcal{S}{\eta}{n-p}(u)\cap B{1}(0{n})))\leq C\eta{-1}(\int_{B_{1+r}(0{n})}\Delta u)r{p}$. When uniqueness of tangents holds for $F$, we show that $S_{\eta}{k}(u)$ is $k$-rectifiable, which implies $\mathcal{S}{k}(u)$ is $k$-rectifiable. When strong uniqueness of tangents holds for $F$, we introduce the monotonicity condition and the notion of $F$-energy. By using refined covering argument, we obtain a definite upper bound on the number of ${\Theta(u,x)\geq c}$ for $c>0$, where $\Theta(u,x)$ is the density of $F$-subharmonic function $u$ at $x$. Geometrically determined subequations $F(\mathbb{G})$ is a very important kind of subequation (when $p=2$, homogeneity of tangents holds for $F(\mathbb{G})$; when $p>2$, uniqueness of tangents holds for $F(\mathbb{G})$). By introducing the notion of $\mathbb{G}$-energy and using quantitative differentation argument, we obtain the Minkowski estimate of quantitative stratification $\text{Vol}(B_{r}(\mathcal{S}{\eta,r}{k}(u))\cap B{1}(0{n}))\leq Cr{n-k-\eta}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.