Some exact solutions of the local induction equation for motion of a vortex in a Bose-Einstein condensate with Gaussian density profile (1610.09119v1)
Abstract: The dynamics of a vortex filament in a trapped Bose-Einstein condensate is considered when the equilibrium density of the condensate, in rotating with angular velocity ${\bf\Omega}$ coordinate system, is Gaussian with a quadratic form ${\bf r}\cdot\hat D{\bf r}$. It is shown that equation of motion of the filament in the local induction approximation admits a class of exact solutions in the form of a straight moving vortex, ${\bf R}(\beta,t)=\beta {\bf M}(t) +{\bf N}(t)$, where $\beta$ is a longitudinal parameter, and $t$ is the time. The vortex is in touch with an ellipsoid, as it follows from the conservation laws ${\bf N}\cdot \hat D {\bf N}=C_1$ and ${\bf M}\cdot \hat D {\bf N}=C_0=0$. Equation of motion for the tangent vector ${\bf M}(t)$ turns out to be closed, and it has the integrals ${\bf M}\cdot \hat D {\bf M}=C_2$, $(|{\bf M}| -{\bf M}\cdot\hat G{\bf \Omega})=C$, where the matrix $\hat G=2(\hat I \mbox{Tr\,} \hat D -\hat D){-1}$. Intersection of the corresponding level surfaces determines trajectories in the phase space.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.