Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Arbres CART et Forêts aléatoires, Importance et sélection de variables (1610.08203v2)

Published 26 Oct 2016 in stat.ME, math.ST, and stat.TH

Abstract: Two algorithms proposed by Leo Breiman : CART trees (Classification And Regression Trees for) introduced in the first half of the 80s and random forests emerged, meanwhile, in the early 2000s, are the subject of this article. The goal is to provide each of the topics, a presentation, a theoretical guarantee, an example and some variants and extensions. After a preamble, introduction recalls objectives of classification and regression problems before retracing some predecessors of the Random Forests. Then, a section is devoted to CART trees then random forests are presented. Then, a variable selection procedure based on permutation variable importance is proposed. Finally the adaptation of random forests to the Big Data context is sketched.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.