Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences (1610.08087v2)

Published 13 Oct 2016 in math.FA, cs.AI, cs.IT, math.IT, and stat.ML

Abstract: This work presents a parametrized family of divergences, namely Alpha-Beta Log- Determinant (Log-Det) divergences, between positive definite unitized trace class operators on a Hilbert space. This is a generalization of the Alpha-Beta Log-Determinant divergences between symmetric, positive definite matrices to the infinite-dimensional setting. The family of Alpha-Beta Log-Det divergences is highly general and contains many divergences as special cases, including the recently formulated infinite dimensional affine-invariant Riemannian distance and the infinite-dimensional Alpha Log-Det divergences between positive definite unitized trace class operators. In particular, it includes a parametrized family of metrics between positive definite trace class operators, with the affine-invariant Riemannian distance and the square root of the symmetric Stein divergence being special cases. For the Alpha-Beta Log-Det divergences between covariance operators on a Reproducing Kernel Hilbert Space (RKHS), we obtain closed form formulas via the corresponding Gram matrices.

Citations (4)

Summary

We haven't generated a summary for this paper yet.