Papers
Topics
Authors
Recent
2000 character limit reached

Computing Divergences between Discrete Decomposable Models

Published 8 Dec 2021 in cs.LG | (2112.04583v2)

Abstract: There are many applications that benefit from computing the exact divergence between 2 discrete probability measures, including machine learning. Unfortunately, in the absence of any assumptions on the structure or independencies within these distributions, computing the divergence between them is an intractable problem in high dimensions. We show that we are able to compute a wide family of functionals and divergences, such as the alpha-beta divergence, between two decomposable models, i.e. chordal Markov networks, in time exponential to the treewidth of these models. The alpha-beta divergence is a family of divergences that include popular divergences such as the Kullback-Leibler divergence, the Hellinger distance, and the chi-squared divergence. Thus, we can accurately compute the exact values of any of this broad class of divergences to the extent to which we can accurately model the two distributions using decomposable models.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.