Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity (1610.06016v3)

Published 19 Oct 2016 in physics.plasm-ph

Abstract: In general, the orbit-averaged radial magnetic drift of trapped particles in stellarators is non-zero due to the three-dimensional nature of the magnetic field. Stellarators in which the orbit-averaged radial magnetic drift vanishes are called omnigeneous, and they exhibit neoclassical transport levels comparable to those of axisymmetric tokamaks. However, the effect of deviations from omnigeneity cannot be neglected in practice. For sufficiently low collision frequencies (below the values that define the $1/\nu$ regime), the components of the drifts tangential to the flux surface become relevant. This article focuses on the study of such collisionality regimes in stellarators close to omnigeneity when the gradient of the non-omnigeneous perturbation is small. First, it is proven that closeness to omnigeneity is required to preserve radial locality in the drift-kinetic equation for collisionalities below the $1/\nu$ regime. Then, it is shown that neoclassical transport is determined by two layers in phase space. One of the layers corresponds to the $\sqrt{\nu}$ regime and the other to the superbanana-plateau regime. The importance of the superbanana-plateau layer for the calculation of the tangential electric field is emphasized, as well as the relevance of the latter for neoclassical transport in the collisionality regimes considered in this paper. In particular, the tangential electric field is essential for the emergence of a new subregime of superbanana-plateau transport when the radial electric field is small. A formula for the ion energy flux that includes the $\sqrt{\nu}$ regime and the superbanana-plateau regime is given. The energy flux scales with the square of the size of the deviation from omnigeneity. Finally, it is explained why below a certain collisionality value the formulation presented in this article ceases to be valid.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube