Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supercongruences involving Lucas sequences (1610.03384v8)

Published 11 Oct 2016 in math.NT

Abstract: For $A,B\in\mathbb Z$, the Lucas sequence $u_n(A,B)\ (n=0,1,2,\ldots)$ are defined by $u_0(A,B)=0$, $u_1(A,B)=1$, and $u_{n+1}(A,B) = Au_n(A,B)-Bu_{n-1}(A,B)$ $(n=1,2,3,\ldots).$ For any odd prime $p$ and positive integer $n$, we establish the new result $$\frac{u_{pn}(A,B) - (\frac{A2-4B}p) u_n(A,B)}{pn} \in \mathbb Z_p,$$ where $(\frac{\cdot}p)$ is the Legendre symbol and $\mathbb Z_p$ is the ring of $p$-adic integers. Let $p$ be an odd prime and let $n$ be a positive integer. For any integer $m\not\equiv0\pmod p$, we show that $$\frac1{pn}\bigg(\sum_{k=0}{pn-1} \frac{\binom{2k}k}{mk} -\left(\frac{\Delta}p\right) \sum_{r=0}{n-1}\frac{\binom{2r}r}{mr}\bigg)\in\mathbb Z_p$$ and furthermore $$\frac1n\bigg(\sum_{k=0}{pn-1} \frac{\binom{2k}k}{mk} -\left(\frac{\Delta}p\right) \sum_{r=0}{n-1}\frac{\binom{2r}r}{mr}\bigg)\equiv \frac{\binom{2n-1}{n-1}}{m{n-1}} u_{p-(\frac{\Delta}p)}(m-2,1) \pmod{p2}$$ where $\Delta=m(m-4)$. We also pose some conjectures for further research.

Summary

We haven't generated a summary for this paper yet.