Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Option pricing with Legendre polynomials (1610.03086v2)

Published 10 Oct 2016 in q-fin.MF and q-fin.CP

Abstract: Here we develop an option pricing method based on Legendre series expansion of the density function. The key insight, relying on the close relation of the characteristic function with the series coefficients, allows to recover the density function rapidly and accurately. Based on this representation for the density function, approximations formulas for pricing European type options are derived. To obtain highly accurate result for European call option, the implementation involves integrating high degree Legendre polynomials against exponential function. Some numerical instabilities arise because of serious subtractive cancellations in its formulation (96) in proposition 7.1. To overcome this difficulty, we rewrite this quantity as solution of a second-order linear difference equation and solve it using a robust and stable algorithm from Olver. Derivation of the pricing method has been accompanied by an error analysis. Errors bounds have been derived and the study relies more on smoothness properties which are not provided by the payoff? functions, but rather by the density function of the underlying stochastic models. This is particularly relevant for options pricing where the payoff of the contract are generally not smooth functions. The numerical experiments on a class of models widely used in quantitative finance show exponential convergence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube