Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Predicting encounter and colocation events in metropolitan areas (1610.01790v1)

Published 6 Oct 2016 in cs.SI

Abstract: Despite an extensive literature has been devoted to mine and model mobility features, forecasting where, when and whom people will encounter/colocate still deserve further research efforts. Forecasting people's encounter and colocation features is the key point for the success of many applications ranging from epidemiology to the design of new networking paradigms and services such as delay tolerant and opportunistic networks. While many algorithms which rely on both mobility and social information have been proposed, we propose a novel encounter and colocation predictive model which predicts user's encounter and colocation events and their features by exploiting the spatio-temporal regularity in the history of these events. We adopt weighted features Bayesian predictor and evaluate its accuracy on two large scales WiFi and cellular datasets. Results show that our approach could improve prediction accuracy w.r.t standard naive Bayesian and some of the state-of-the-art predictors.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.