Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Game-Theoretic Approach to Robust Fusion and Kalman Filtering Under Unknown Correlations (1610.01045v1)

Published 4 Oct 2016 in cs.SY, cs.RO, and math.OC

Abstract: This work addresses the problem of fusing two random vectors with unknown cross-correlations. We present a formulation and a numerical method for computing the optimal estimate in the minimax sense. We extend our formulation to linear measurement models that depend on two random vectors with unknown cross-correlations. As an application we consider the problem of decentralized state estimation for a group of agents. The proposed estimator takes cross-correlations into account while being less conservative than the widely used Covariance Intersection. We demonstrate the superiority of the proposed method compared to Covariance Intersection with numerical examples and simulations within the specific application of decentralized state estimation using relative position measurements.

Citations (16)

Summary

We haven't generated a summary for this paper yet.