Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Analyzing Cross-correlators using Price's Theorem and Piecewise-Linear Decomposition (2304.09242v2)

Published 18 Apr 2023 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Precise estimation of cross-correlation or similarity between two random variables lies at the heart of signal detection, hyperdimensional computing, associative memories, and neural networks. Although a vast literature exists on different methods for estimating cross-correlations, the question what is the best and simplest method to estimate cross-correlations using finite samples ? is still unclear. In this paper, we first argue that the standard empirical approach might not be the optimal method even though the estimator exhibits uniform convergence to the true cross-correlation. Instead, we show that there exists a large class of simple non-linear functions that can be used to construct cross-correlators with a higher signal-to-noise ratio (SNR). To demonstrate this, we first present a general mathematical framework using Price's Theorem that allows us to analyze cross-correlators constructed using a mixture of piece-wise linear functions. Using this framework and high-dimensional embedding, we show that some of the most promising cross-correlators are based on Huber's loss functions, margin-propagation (MP) functions, and the log-sum-exp (LSE) functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.