Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tuning parameter calibration for $\ell_1$-regularized logistic regression (1610.00207v2)

Published 1 Oct 2016 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: Feature selection is a standard approach to understanding and modeling high-dimensional classification data, but the corresponding statistical methods hinge on tuning parameters that are difficult to calibrate. In particular, existing calibration schemes in the logistic regression framework lack any finite sample guarantees. In this paper, we introduce a novel calibration scheme for $\ell_1$-penalized logistic regression. It is based on simple tests along the tuning parameter path and is equipped with optimal guarantees for feature selection. It is also amenable to easy and efficient implementations, and it rivals or outmatches existing methods in simulations and real data applications.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.