Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Levi Subgroup Actions on Schubert Varieties, Induced Decompositions of their Coordinate Rings, and Sphericity Consequences (1609.09538v2)

Published 29 Sep 2016 in math.RT

Abstract: Let $L_w$ be the Levi part of the stabilizer $Q_w$ in $GL_N$ (for left multiplication) of a Schubert variety $X(w)$ in the Grassmannian $G_{d,N}$. For the natural action of $L_w$ on $\mathbb{C}[X(w)]$, the homogeneous coordinate ring of $X(w)$ (for the Pl\"ucker embedding), we give a combinatorial description of the decomposition of $\mathbb{C}[X(w)]$ into irreducible $L_w$-modules; in fact, our description holds more generally for the action of the Levi part $L$ of any parabolic subgroup $Q$ that is contained in $Q_w$. This decomposition is then used to show that all smooth Schubert varieties, all determinantal Schubert varieties, and all Schubert varieties in $G_{2,N}$ are spherical $L_w$-varieties.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.