Papers
Topics
Authors
Recent
Search
2000 character limit reached

A classification of spherical Schubert varieties in the Grassmannian

Published 21 Sep 2018 in math.RT, math.AG, and math.CO | (1809.08003v1)

Abstract: Let $L$ be a Levi subgroup of $GL_N$ which acts by left multiplication on a Schubert variety $X(w)$ in the Grassmannian $G_{d,N}$. We say that $X(w)$ is a spherical Schubert variety if $X(w)$ is a spherical variety for the action of $L$. In earlier work we provide a combinatorial description of the decomposition of the homogeneous coordinate ring of $X(w)$ into irreducible $L$-modules for the induced action of $L$. In this work we classify those decompositions into irreducible $L$-modules that are multiplicity-free. This is then applied towards giving a complete classification of the spherical Schubert varieties in the Grassmannian.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.