Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A classification of spherical Schubert varieties in the Grassmannian (1809.08003v1)

Published 21 Sep 2018 in math.RT, math.AG, and math.CO

Abstract: Let $L$ be a Levi subgroup of $GL_N$ which acts by left multiplication on a Schubert variety $X(w)$ in the Grassmannian $G_{d,N}$. We say that $X(w)$ is a spherical Schubert variety if $X(w)$ is a spherical variety for the action of $L$. In earlier work we provide a combinatorial description of the decomposition of the homogeneous coordinate ring of $X(w)$ into irreducible $L$-modules for the induced action of $L$. In this work we classify those decompositions into irreducible $L$-modules that are multiplicity-free. This is then applied towards giving a complete classification of the spherical Schubert varieties in the Grassmannian.

Summary

We haven't generated a summary for this paper yet.