Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Matrix models for multilevel Heckman-Opdam and multivariate Bessel measures (1609.09096v1)

Published 28 Sep 2016 in math.PR, math-ph, math.MP, and math.RT

Abstract: We study multilevel matrix ensembles at general beta by identifying them with a class of processes defined via the branching rules for multivariate Bessel and Heckman-Opdam hypergeometric functions. For beta = 1, 2, we express the joint multilevel density of the eigenvalues of a generalized beta-Wishart matrix as a multivariate Bessel ensemble, generalizing a result of Dieker-Warren. In the null case, we prove the conjecture of Borodin-Gorin that the joint multilevel density of the beta-Jacobi ensemble is given by a principally specialized Heckman-Opdam measure.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)