Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Binary Hypothesis Testing via Measure Transformed Quasi Likelihood Ratio Test (1609.07958v2)

Published 26 Sep 2016 in stat.ME

Abstract: In this paper, the Gaussian quasi likelihood ratio test (GQLRT) for non-Bayesian binary hypothesis testing is generalized by applying a transform to the probability distribution of the data. The proposed generalization, called measure-transformed GQLRT (MT-GQLRT), selects a Gaussian probability model that best empirically fits a transformed probability measure of the data. By judicious choice of the transform we show that, unlike the GQLRT, the proposed test is resilient to outliers and involves higher-order statistical moments leading to significant mitigation of the model mismatch effect on the decision performance. Under some mild regularity conditions we show that the MT-GQLRT is consistent and its corresponding test statistic is asymptotically normal. A data driven procedure for optimal selection of the measure transformation parameters is developed that maximizes an empirical estimate of the asymptotic power given a fixed empirical asymptotic size. A Bayesian extension of the proposed MT-GQLRT is also developed that is based on selection of a Gaussian probability model that best empirically fits a transformed conditional probability distribution of the data. In the Bayesian MT-GQLRT the threshold and the measure transformation parameters are selected via joint minimization of the empirical asymptotic Bayes risk. The non-Bayesian and Bayesian MT-GQLRTs are applied to signal detection and classification, in simulation examples that illustrate their advantages over the standard GQLRT and other robust alternatives.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.