Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Determining Hilbert Modular Forms by Central Values of Rankin-Selberg Convolutions: The Weight Aspect (1609.07211v1)

Published 23 Sep 2016 in math.NT

Abstract: The purpose of this paper is to prove that a primitive Hilbert cusp form $\mathbf{g}$ is uniquely determined by the central values of the Rankin-Selberg $L$-functions $L(\mathbf{f}\otimes\mathbf{g}, \frac{1}{2})$, where $\mathbf{f}$ runs through all primitive Hilbert cusp forms of weight $k$ for infinitely many weight vectors $k$. This work is a generalization of a result of Ganguly, Hoffstein, and Sengupta to the setting of totally real number fields, and it is a weight aspect analogue of the authors recent work.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.