Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Neural Machine Learning - Backpropagation and Dynamics (1609.06935v1)

Published 22 Sep 2016 in cs.NE, cond-mat.dis-nn, nlin.AO, and quant-ph

Abstract: The current work addresses quantum machine learning in the context of Quantum Artificial Neural Networks such that the networks' processing is divided in two stages: the learning stage, where the network converges to a specific quantum circuit, and the backpropagation stage where the network effectively works as a self-programing quantum computing system that selects the quantum circuits to solve computing problems. The results are extended to general architectures including recurrent networks that interact with an environment, coupling with it in the neural links' activation order, and self-organizing in a dynamical regime that intermixes patterns of dynamical stochasticity and persistent quasiperiodic dynamics, making emerge a form of noise resilient dynamical record.

Citations (28)

Summary

We haven't generated a summary for this paper yet.