Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Quick Introduction to Quantum Machine Learning for Non-Practitioners (2402.14694v1)

Published 22 Feb 2024 in quant-ph, cs.ET, and cs.LG

Abstract: This paper provides an introduction to quantum machine learning, exploring the potential benefits of using quantum computing principles and algorithms that may improve upon classical machine learning approaches. Quantum computing utilizes particles governed by quantum mechanics for computational purposes, leveraging properties like superposition and entanglement for information representation and manipulation. Quantum machine learning applies these principles to enhance classical machine learning models, potentially reducing network size and training time on quantum hardware. The paper covers basic quantum mechanics principles, including superposition, phase space, and entanglement, and introduces the concept of quantum gates that exploit these properties. It also reviews classical deep learning concepts, such as artificial neural networks, gradient descent, and backpropagation, before delving into trainable quantum circuits as neural networks. An example problem demonstrates the potential advantages of quantum neural networks, and the appendices provide detailed derivations. The paper aims to help researchers new to quantum mechanics and machine learning develop their expertise more efficiently.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. A. Turing, “Intelligent machinery (1948),” B. Jack Copeland, p. 395, 2004.
  2. K. Naja, S. F. Yelin, and X. Gao, “The development of quantum machine learning,” 2022.
  3. B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nature Photonics, vol. 15, no. 2, pp. 102–114, 2021.
  4. S. Aaronson, “Introduction to quantum information science ii lecture notes,” 2022. [Online]. Available: https://www.scottaaronson.com/qclec.pdf
  5. Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and high-dimensional quantum computing,” Frontiers in Physics, vol. 8, p. 589504, 2020.
  6. S. Lloyd and S. L. Braunstein, “Quantum computation over continuous variables,” Physical Review Letters, vol. 82, no. 8, p. 1784, 1999.
  7. O. Pfister, “Continuous-variable quantum computing in the quantum optical frequency comb,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 53, no. 1, p. 012001, 2019.
  8. T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998.
  9. P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver, “Perspectives of quantum annealing: Methods and implementations,” Reports on Progress in Physics, vol. 83, no. 5, p. 054401, 2020.
  10. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
  11. “Our quantum computing journey,” 2023. [Online]. Available: https://quantumai.google/learn/map
  12. N. Zettili, “Quantum mechanics: concepts and applications,” 2009.
  13. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko et al., “Highly accurate protein structure prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.
  14. J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli et al., “Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators,” arXiv preprint arXiv:2202.11214, 2022.
  15. R. OpenAI, “Gpt-4 technical report. arxiv 2303.08774,” View in Article, vol. 2, p. 13, 2023.
  16. Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs, B. Sapp, B. White, A. Faust, S. Whiteson et al., “Imitation is not enough: Robustifying imitation with reinforcement learning for challenging driving scenarios,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 7553–7560.
  17. J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner, A. Abdolmaleki, D. de Las Casas et al., “Magnetic control of tokamak plasmas through deep reinforcement learning,” Nature, vol. 602, no. 7897, pp. 414–419, 2022.
  18. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.
  19. D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning internal representations by error propagation,” 1985.
  20. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.
  21. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi et al., “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968, 2018.
  22. J. Izaac, “Basic tutorial: qubit rotation,” 2019. [Online]. Available: https://pennylane.ai/qml/demos/tutorial_qubit_rotation.html
  23. ——, “Quantum gradients with backpropagation,” 2020. [Online]. Available: https://pennylane.ai/qml/demos/tutorial_backprop.html#quantum-gradients-with-backpropagation
  24. “Parameter-shift rules,” 2022. [Online]. Available: https://pennylane.ai/qml/glossary/parameter_shift.html
  25. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating analytic gradients on quantum hardware,” Physical Review A, vol. 99, no. 3, p. 032331, 2019.
  26. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.
  27. N. Killoran, “The stochastic parameter-shift rule,” 2020. [Online]. Available: https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift/
  28. J. C. Spall, “Implementation of the simultaneous perturbation algorithm for stochastic optimization,” IEEE Transactions on aerospace and electronic systems, vol. 34, no. 3, pp. 817–823, 1998.
  29. J. Stokes, J. Izaac, N. Killoran, and G. Carleo, “Quantum natural gradient,” Quantum, vol. 4, p. 269, 2020.
  30. I. Grossu, “Single qubit neural quantum circuit for solving exclusive-or,” MethodsX, vol. 8, p. 101573, 2021.
  31. L. Banchi and G. E. Crooks, “Measuring analytic gradients of general quantum evolution with the stochastic parameter shift rule,” Quantum, vol. 5, p. 386, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ethan N. Evans (10 papers)
  2. Dominic Byrne (1 paper)
  3. Matthew G. Cook (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com