A Quick Introduction to Quantum Machine Learning for Non-Practitioners (2402.14694v1)
Abstract: This paper provides an introduction to quantum machine learning, exploring the potential benefits of using quantum computing principles and algorithms that may improve upon classical machine learning approaches. Quantum computing utilizes particles governed by quantum mechanics for computational purposes, leveraging properties like superposition and entanglement for information representation and manipulation. Quantum machine learning applies these principles to enhance classical machine learning models, potentially reducing network size and training time on quantum hardware. The paper covers basic quantum mechanics principles, including superposition, phase space, and entanglement, and introduces the concept of quantum gates that exploit these properties. It also reviews classical deep learning concepts, such as artificial neural networks, gradient descent, and backpropagation, before delving into trainable quantum circuits as neural networks. An example problem demonstrates the potential advantages of quantum neural networks, and the appendices provide detailed derivations. The paper aims to help researchers new to quantum mechanics and machine learning develop their expertise more efficiently.
- A. Turing, “Intelligent machinery (1948),” B. Jack Copeland, p. 395, 2004.
- K. Naja, S. F. Yelin, and X. Gao, “The development of quantum machine learning,” 2022.
- B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nature Photonics, vol. 15, no. 2, pp. 102–114, 2021.
- S. Aaronson, “Introduction to quantum information science ii lecture notes,” 2022. [Online]. Available: https://www.scottaaronson.com/qclec.pdf
- Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and high-dimensional quantum computing,” Frontiers in Physics, vol. 8, p. 589504, 2020.
- S. Lloyd and S. L. Braunstein, “Quantum computation over continuous variables,” Physical Review Letters, vol. 82, no. 8, p. 1784, 1999.
- O. Pfister, “Continuous-variable quantum computing in the quantum optical frequency comb,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 53, no. 1, p. 012001, 2019.
- T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998.
- P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver, “Perspectives of quantum annealing: Methods and implementations,” Reports on Progress in Physics, vol. 83, no. 5, p. 054401, 2020.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
- “Our quantum computing journey,” 2023. [Online]. Available: https://quantumai.google/learn/map
- N. Zettili, “Quantum mechanics: concepts and applications,” 2009.
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko et al., “Highly accurate protein structure prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.
- J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli et al., “Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators,” arXiv preprint arXiv:2202.11214, 2022.
- R. OpenAI, “Gpt-4 technical report. arxiv 2303.08774,” View in Article, vol. 2, p. 13, 2023.
- Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs, B. Sapp, B. White, A. Faust, S. Whiteson et al., “Imitation is not enough: Robustifying imitation with reinforcement learning for challenging driving scenarios,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 7553–7560.
- J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner, A. Abdolmaleki, D. de Las Casas et al., “Magnetic control of tokamak plasmas through deep reinforcement learning,” Nature, vol. 602, no. 7897, pp. 414–419, 2022.
- K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.
- D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning internal representations by error propagation,” 1985.
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.
- V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi et al., “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968, 2018.
- J. Izaac, “Basic tutorial: qubit rotation,” 2019. [Online]. Available: https://pennylane.ai/qml/demos/tutorial_qubit_rotation.html
- ——, “Quantum gradients with backpropagation,” 2020. [Online]. Available: https://pennylane.ai/qml/demos/tutorial_backprop.html#quantum-gradients-with-backpropagation
- “Parameter-shift rules,” 2022. [Online]. Available: https://pennylane.ai/qml/glossary/parameter_shift.html
- M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating analytic gradients on quantum hardware,” Physical Review A, vol. 99, no. 3, p. 032331, 2019.
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.
- N. Killoran, “The stochastic parameter-shift rule,” 2020. [Online]. Available: https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift/
- J. C. Spall, “Implementation of the simultaneous perturbation algorithm for stochastic optimization,” IEEE Transactions on aerospace and electronic systems, vol. 34, no. 3, pp. 817–823, 1998.
- J. Stokes, J. Izaac, N. Killoran, and G. Carleo, “Quantum natural gradient,” Quantum, vol. 4, p. 269, 2020.
- I. Grossu, “Single qubit neural quantum circuit for solving exclusive-or,” MethodsX, vol. 8, p. 101573, 2021.
- L. Banchi and G. E. Crooks, “Measuring analytic gradients of general quantum evolution with the stochastic parameter shift rule,” Quantum, vol. 5, p. 386, 2021.
- Ethan N. Evans (10 papers)
- Dominic Byrne (1 paper)
- Matthew G. Cook (1 paper)