Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-preserving Average Consensus: Privacy Analysis and Optimal Algorithm Design (1609.06368v2)

Published 20 Sep 2016 in cs.SY

Abstract: Privacy-preserving average consensus aims to guarantee the privacy of initial states and asymptotic consensus on the exact average of the initial value. In existing work, it is achieved by adding and subtracting variance decaying and zero-sum random noises to the consensus process. However, there is lack of theoretical analysis to quantify the degree of the privacy protection. In this paper, we introduce the maximum disclosure probability that the other nodes can infer one node's initial state within a given small interval to quantify the privacy. We develop a novel privacy definition, named $(\epsilon, \delta)$-data-privacy, to depict the relationship between maximum disclosure probability and estimation accuracy. Then, we prove that the general privacy-preserving average consensus (GPAC) provides $(\epsilon, \delta)$-data-privacy, and provide the closed-form expression of the relationship between $\epsilon$ and $\delta$. Meanwhile, it is shown that the added noise with uniform distribution is optimal in terms of achieving the highest $(\epsilon, \delta)$-data-privacy. We also prove that when all information used in the consensus process is available, the privacy will be compromised. Finally, an optimal privacy-preserving average consensus (OPAC) algorithm is proposed to achieve the highest $(\epsilon, \delta)$-data-privacy and avoid the privacy compromission. Simulations are conducted to verify the results.

Citations (36)

Summary

We haven't generated a summary for this paper yet.