Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preserving Data-Privacy with Added Noises: Optimal Estimation and Privacy Analysis (1703.06212v1)

Published 17 Mar 2017 in cs.IT and math.IT

Abstract: Networked system often relies on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add a random noise to its original data for information exchange at each iteration. Nevertheless, a neighbor node can estimate other's original data based on the information it received. The estimation accuracy and data privacy can be measured in terms of $(\epsilon, \delta)$-data-privacy, defined as the probability of $\epsilon$-accurate estimation (the difference of an estimation and the original data is within $\epsilon$) is no larger than $\delta$ (the disclosure probability). How to optimize the estimation and analyze data privacy is a critical and open issue. In this paper, a theoretical framework is developed to investigate how to optimize the estimation of neighbor's original data using the local information received, named optimal distributed estimation. Then, we study the disclosure probability under the optimal estimation for data privacy analysis. We further apply the developed framework to analyze the data privacy of the privacy-preserving average consensus algorithm and identify the optimal noises for the algorithm.

Citations (83)

Summary

We haven't generated a summary for this paper yet.