Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kmerlight: fast and accurate k-mer abundance estimation (1609.05626v1)

Published 19 Sep 2016 in cs.DS

Abstract: k-mers (nucleotide strings of length k) form the basis of several algorithms in computational genomics. In particular, k-mer abundance information in sequence data is useful in read error correction, parameter estimation for genome assembly, digital normalization etc. We give a streaming algorithm Kmerlight for computing the k-mer abundance histogram from sequence data. Our algorithm is fast and uses very small memory footprint. We provide analytical bounds on the error guarantees of our algorithm. Kmerlight can efficiently process genome scale and metagenome scale data using standard desktop machines. Few applications of abundance histograms computed by Kmerlight are also shown. We use abundance histogram for de novo estimation of repetitiveness in the genome based on a simple probabilistic model that we propose. We also show estimation of k-mer error rate in the sampling using abundance histogram. Our algorithm can also be used for abundance estimation in a general streaming setting. The Kmerlight tool is written in C++ and is available for download and use from https://github.com/nsivad/kmerlight.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub