Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MSPKmerCounter: A Fast and Memory Efficient Approach for K-mer Counting (1505.06550v1)

Published 25 May 2015 in q-bio.GN, cs.CE, and cs.DS

Abstract: A major challenge in next-generation genome sequencing (NGS) is to assemble massive overlapping short reads that are randomly sampled from DNA fragments. To complete assembling, one needs to finish a fundamental task in many leading assembly algorithms: counting the number of occurrences of k-mers (length-k substrings in sequences). The counting results are critical for many components in assembly (e.g. variants detection and read error correction). For large genomes, the k-mer counting task can easily consume a huge amount of memory, making it impossible for large-scale parallel assembly on commodity servers. In this paper, we develop MSPKmerCounter, a disk-based approach, to efficiently perform k-mer counting for large genomes using a small amount of memory. Our approach is based on a novel technique called Minimum Substring Partitioning (MSP). MSP breaks short reads into multiple disjoint partitions such that each partition can be loaded into memory and processed individually. By leveraging the overlaps among the k-mers derived from the same short read, MSP can achieve astonishing compression ratio so that the I/O cost can be significantly reduced. For the task of k-mer counting, MSPKmerCounter offers a very fast and memory-efficient solution. Experiment results on large real-life short reads data sets demonstrate that MSPKmerCounter can achieve better overall performance than state-of-the-art k-mer counting approaches. MSPKmerCounter is available at http://www.cs.ucsb.edu/~yangli/MSPKmerCounter

Citations (53)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com